
Chapter 1

Lexical Analysis



Outline
 Role of lexical analyzer

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator



The role of lexical analyzer

Lexical 
Analyzer

Parser
Source

program

token

getNextToken

Symbol
table

To semantic

analysis



Why to separate Lexical analysis 
and parsing
1. Simplicity of design 

2. Improving compiler efficiency

3. Enhancing compiler portability



Tokens, Patterns and Lexemes
 A token is a pair a token name and an optional token 

value

 A pattern is a description of the form that the lexemes 
of a token may take

 A lexeme is a sequence of characters in the source 
program that matches the pattern for a token



Example

Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);



Attributes for tokens
 E = M * C ** 2

 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>



Lexical errors
 Some errors are out of power of lexical analyzer to 

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens 
matches a character sequence



Error recovery
 Panic mode: successive characters are ignored until we 

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters



Input buffering
 Sometimes lexical analyzer needs to look ahead some 

symbols to decide about the token to return

 In C language: we need to look after -, = or < to decide 
what token to return

 In Fortran: DO 5 I = 1.25

 We need to introduce a two buffer scheme to handle 
large look-aheads safely

E   =   M *  C * * 2 eof



Sentinels

Switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if {forward is at end of second buffer) {

reload first buffer;\

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters;

}

E   =   M eof *  C * * 2 eof eof



Specification of tokens
 In theory of compilation regular expressions are used 

to formalize the specification of tokens

 Regular expressions are means for specifying regular 
languages

 Example:
 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the 
form of strings



Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a) 
= {a}

 (r) | (s) is a regular expression denoting the language 
L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language 
L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)



Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

 Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*



Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_  -> [A-Za-z_]

 digit     -> [0-9]

 id          -> letter_(letter|digit)*



Recognition of tokens
 Starting point is the language grammar to understand 

the tokens:

stmt -> if expr then stmt

|  if expr then stmt else stmt

| Ɛ

expr -> term relop term

|  term

term -> id

|  number



Recognition of tokens (cont.)
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter  -> [A-Za-z_]

id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+



Transition diagrams
 Transition diagram for relop



Transition diagrams (cont.)
 Transition diagram for reserved words and identifiers



Transition diagrams (cont.)
 Transition diagram for unsigned numbers



Transition diagrams (cont.)
 Transition diagram for whitespace



Architecture of a transition-
diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

if (c == ‘<‘) state = 1;

else if (c == ‘=‘) state = 5;

else if (c == ‘>’) state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

…

case 8: retract();

retToken.attribute = GT;

return(retToken);

}



Lexical Analyzer Generator - Lex

Lexical 
Compiler

Lex Source program

lex.l
lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence 

of tokens



Structure of Lex programs

declarations

%%

translation rules

%%

auxiliary functions

Pattern    {Action}



Example
%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID); }

{number} {yylval = (int) installNum(); return(NUMBER);}

…

Int installID() {/* funtion to install the 
lexeme, whose first character is 
pointed to by yytext, and whose 
length is yyleng, into the symbol 
table and return a pointer thereto 
*/

}

Int installNum() { /* similar to 
installID, but puts numerical 
constants into a separate table */

}



26

Finite Automata
 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of

 An input alphabet 

 A set of states S

 A start state n

 A set of accepting states F  S

 A set of transitions  state input state



27

Finite Automata
 Transition

s1 
a s2

 Is read

In state s1 on input “a” go to state  s2

 If end of input

 If in accepting state => accept, othewise => reject

 If no transition possible => reject



28

Finite Automata State Graphs
 A state

• The start state

• An accepting state

• A transition
a



29

A Simple Example
 A finite automaton that accepts only “1”

 A finite automaton accepts a string if we can follow 
transitions labeled with the characters in the string 
from the start to some accepting state

1



30

Another Simple Example
 A finite automaton accepting any number of 1’s 

followed by a single 0

 Alphabet: {0,1}

 Check that “1110” is accepted but “110…” is not 

0

1



31

And Another Example
 Alphabet {0,1}

 What language does this recognize?

0

1

0

1

0

1



32

And Another Example
 Alphabet still { 0, 1 }

 The operation of the automaton is not completely 
defined by the input

 On input “11” the automaton could be in either state 

1

1



33

Epsilon Moves
 Another kind of transition: -moves



• Machine can move from state A to state B 
without reading input

A B



34

Deterministic and 
Nondeterministic Automata
 Deterministic Finite Automata (DFA)

 One transition per input per state

 No -moves

 Nondeterministic Finite Automata (NFA)

 Can have multiple transitions for one input in a given 
state

 Can have -moves

 Finite automata have finite memory

 Need only to encode the current state



35

Execution of Finite Automata
 A DFA can take only one path through the state graph

 Completely determined by input

 NFAs can choose

 Whether to make -moves

 Which of multiple transitions for a single input to take



36

Acceptance of NFAs
 An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state



37

NFA vs. DFA (1)
 NFAs and DFAs recognize the same set of languages 

(regular languages)

 DFAs are easier to implement

 There are no choices to consider



38

NFA vs. DFA (2)
 For a given language the NFA can be simpler than the 

DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA



39

Regular Expressions to Finite 
Automata
 High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA



40

Regular Expressions to NFA (1)
 For each kind of rexp, define an NFA

 Notation: NFA for rexp A        

A

• For 


• For input a
a



41

Regular Expressions to NFA (2)
 For AB

A B


• For A | B

A

B











42

Regular Expressions to NFA (3)
 For A*

A








43

Example of RegExp -> NFA 
conversion
 Consider the regular expression

(1 | 0)*1

 The NFA is



1
C E

0
D F




B





G







A H
1

I J



44

Next

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA



45

NFA to DFA. The Trick
 Simulate the NFA

 Each state of resulting DFA 

= a non-empty subset of states of the NFA

 Start state 

= the set of NFA states reachable through -moves from 
NFA start state

 Add a transition S a S’ to DFA iff

 S’ is the set of NFA states reachable from the states in S 
after seeing the input a

 considering -moves as well



46

NFA -> DFA Example

1

0
1

 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

1
0 1



47

NFA to DFA. Remark
 An NFA may be in many states at any time

 How many different states ?

 If there are N states, the NFA must be in some subset 
of those N states

 How many non-empty subsets are there?

 2N - 1 = finitely many, but exponentially many



48

Implementation
 A DFA can be implemented by a 2D table T

 One dimension is “states”

 Other dimension is “input symbols”

 For every transition Si 
a Sk define T[i,a] = k

 DFA “execution”

 If in state Si and input a, read T[i,a] = k and skip to state 
Sk

 Very efficient



49

Table Implementation of a DFA

S

T

U

0

1

0

1
0 1

0 1

S T U

T T U

U T U



50

Implementation (Cont.)
 NFA -> DFA conversion is at the heart of tools such as 

flex or jflex

 But, DFAs can be huge

 In practice, flex-like tools trade off speed for space in 
the choice of NFA and DFA representations



Readings
 Chapter 3 of the book



Chapter 8

Code Generation



Outline
 Code Generation Issues

 Target language Issues

 Addresses in Target Code

 Basic Blocks and Flow Graphs

 Optimizations of Basic Blocks

 A Simple Code Generator

 Peephole optimization

 Register allocation and assignment

 Instruction selection by tree rewriting



Introduction
 The final phase of a compiler is code generator
 It receives an intermediate representation (IR) with 

supplementary information in symbol table
 Produces a semantically equivalent target program
 Code generator main tasks:

 Instruction selection
 Register allocation and assignment
 Insrtuction ordering

Front 
end

Code optimizer
Code 

Generator



Issues in the Design of Code 
Generator
 The most important criterion is that it produces correct 

code
 Input to the code generator

 IR + Symbol table
 We assume front end produces low-level IR, i.e. values of 

names in it can be directly manipulated by the machine 
instructions.

 Syntactic and semantic errors have been already detected

 The target program
 Common target architectures are: RISC, CISC and Stack 

based machines
 In this chapter we use a very simple RISC-like computer with 

addition of some CISC-like addressing modes



complexity of mapping
 the level of the IR

 the nature of the instruction-set architecture

 the desired quality of the generated code.

x=y+z

LD R0, y

ADD R0, R0, z

ST x, R0

a=b+c

d=a+e

LD R0, b

ADD R0, R0, c

ST a, R0

LD R0, a

ADD R0, R0, e

ST d, R0



Register allocation
 Two subproblems

 Register allocation: selecting the set of variables that will reside in 
registers at each point in the program

 Resister assignment: selecting specific register that a variable reside 
in

 Complications imposed by the hardware architecture

 Example: register pairs for multiplication and division

t=a+b

t=t*c

T=t/d

t=a+b

t=t+c

T=t/d

L R1, a 

A R1, b

M R0, c

D R0, d

ST R1, t

L R0, a 

A R0, b

M R0, c

SRDA R0, 32

D R0, d

ST R1, t



A simple target machine model
 Load operations: LD r,x and LD r1, r2

 Store operations: ST x,r

 Computation operations: OP dst, src1, src2

 Unconditional jumps: BR L

 Conditional jumps: Bcond r, L like BLTZ r, L



Addressing Modes
 variable name: x

 indexed address: a(r) like LD R1, a(R2) means 

R1=contents(a+contents(R2))

 integer  indexed by a register : like LD R1, 100(R2)

 Indirect addressing mode: *r and *100(r)

 immediate constant addressing mode: like LD R1, #100



b = a [i]
LD R1, i //R1 = i

MUL R1, R1, 8 //R1 = Rl * 8

LD R2, a(R1) 

//R2=contents(a+contents(R1))

ST b, R2 //b = R2



a[j] = c
LD R1, c //R1 = c

LD R2, j // R2 = j

MUL R2, R2, 8 //R2 = R2 * 8

ST  a(R2), R1

//contents(a+contents(R2))=R1



x=*p
LD R1, p //R1 = p

LD R2, 0(R1) // R2 = 

contents(0+contents(R1))

ST  x, R2 // x=R2



conditional-jump three-address instruction

If x<y goto L

LD R1, x // R1 = x

LD R2, y // R2 = y

SUB R1, R1, R2 // R1 = R1 - R2

BLTZ R1, M // i f R1 < 0 jump t o M



costs associated with the addressing modes

 LD R0, R1 cost = 1

 LD R0, M cost = 2

 LD R1, *100(R2) cost = 3



Addresses in the Target Code

 A statically determined area Code

 A statically determined data area Static

 A dynamically managed area Heap

 A dynamically managed area Stack



three-address statements for 
procedure calls and returns
 call callee

 Return

 Halt

 action



Target program for a sample call and return



Stack Allocation

Return to caller

in Callee: BR *0(SP)

in caller: SUB SP, SP, #caller.recordsize

Branch to called procedure



Target code for stack allocation



Basic blocks and flow graphs

 Partition the intermediate code into basic blocks

 The flow of control can only enter the basic block 
through the first instruction in the block. That is, there 
are no jumps into the middle of the block.

 Control will leave the block without halting or 
branching, except possibly at the last instruction in the 
block.

 The basic blocks become the nodes of a flow graph



rules for finding leaders
 The first three-address instruction in the intermediate 

code is a leader.

 Any instruction that is the target of a conditional or 

unconditional jump is a leader.

 Any instruction that immediately follows a conditional 

or unconditional jump is a leader.



Intermediate code to set a 10*10 matrix 
to an identity matrix



Flow graph based on Basic Blocks



liveness and next-use information
 We wish to determine for each three address statement  

x=y+z what the next uses of x, y and z are.

 Algorithm:

 Attach to statement i the information currently found in 

the symbol table regarding the next use and liveness of 

x, y, and z.

 In the symbol table, set x to "not live" and "no next use.“

 In the symbol table, set y and z to "live" and the next 

uses of y and z to i.



DAG representation of basic 
blocks
 There is a node in the DAG for each of the initial 

values of the variables appearing in the basic block.

 There is a node N associated with each statement s 
within the block. The children of N are those nodes 
corresponding to statements that are the last 
definitions, prior to s, of the operands used by s.

 Node N is labeled by the operator applied at s, and also 
attached to N is the list of variables for which it is the 
last definition within the block.

 Certain nodes are designated output nodes. These are 
the nodes whose variables are live on exit from the 
block.



Code improving transformations
 We can eliminate local common subexpressions, that 

is, instructions that compute a value that has already 
been computed.

 We can eliminate dead code, that is, instructions that 
compute a value that is never used.

 We can reorder statements that do not depend on one 
another; such reordering may reduce the time a 
temporary value needs to be preserved in a register.

 We can apply algebraic laws to reorder operands of 
three-address instructions, and sometimes t hereby 
simplify t he computation.



DAG for basic block



DAG for basic block



array accesses in a DAG
 An assignment from an array, like x = a [i], is represented by 

creating a node with operator =[] and two children representing 
the initial value of the array, a0 in this case, and the index i. 
Variable x becomes a label of this new node.

 An assignment to an array, like a [j] = y, is represented by a new 
node with operator []= and three children representing a0, j and 
y. There is no variable labeling this node. What is different is that 
the creation of this node kills all currently constructed nodes 
whose value depends on a0. A node that has been killed cannot 
receive any more labels; that is, it cannot become a common 
subexpression.



DAG for a sequence of array assignments



Rules for reconstructing the basic block 
from a DAG
 The order of instructions must respect the order of nodes in the DAG. 

That is, we cannot compute a node's value until we have computed a 
value for each of its children.

 Assignments to an array must follow all previous assignments to, or 
evaluations from, the same array, according to the order of these 
instructions in the original basic block.

 Evaluations of array elements must follow any previous (according to 
the original block) assignments to the same array. The only 
permutation allowed is that two evaluations from the same array may 
be done in either order, as long as neither crosses over an assignment to 
that array.

 Any use of a variable must follow all previous (according to the original 
block) procedure calls or indirect assignments through a pointer.

 Any procedure call or indirect assignment through a pointer must 
follow all previous (according to the original block) evaluations of any 
variable.



principal uses of registers
 In most machine architectures, some or all of the 

operands of an operation must be in registers in order 
to perform the operation.

 Registers make good temporaries - places to hold the 
result of a subexpression while a larger expression is 
being evaluated, or more generally, a place to hold a 
variable that is used only within a single basic block.

 Registers are often used to help with run-time storage 
management, for example, to manage the run-time 
stack, including the maintenance of stack pointers and 
possibly the top elements of the stack itself.



Descriptors for data structure
 For each available register, a register descriptor keeps track of the 

variable names whose current value is in that register. Since we 
shall use only those registers that are available for local use 
within a basic block, we assume that initially, all register 
descriptors are empty. As the code generation progresses, each 
register will hold the value of zero or more names.

 For each program variable, an address descriptor keeps track of 
the location or locations where the current value of that variable 
can be found. The location might be a register, a memory 
address, a stack location, or some set of more than one of these. 
The information can be stored in the symbol-table entry for that 
variable name.



Machine Instructions for Operations

 Use getReg(x = y + z) to select registers for x, y, and z. 
Call these Rx, Ry and Rz.

 If y is not in Ry (according to the register descriptor for 
Ry), then issue an instruction LD Ry, y', where y' is one 
of the memory locations for y (according to the 
address descriptor for y).

 Similarly, if z is not in Rz, issue and instruction LD Rz, 
z', where z' is a location for x .

 Issue the instruction ADD Rx , Ry, Rz.



Rules for updating the register and address descriptors

 For the instruction LD R, x
 Change the register descriptor for register R so it holds only x.
 Change the address descriptor for x by adding register R as an 

additional location.

 For the instruction ST x, R, change the address descriptor for x to 
include its own memory location.

 For an operation such as ADD Rx, Ry, Rz implementing a three-
address instruction x = y + x
 Change the register descriptor for Rx so that it holds only x.
 Change the address descriptor for x so that its only location is Rx. 

Note that the memory location for x is not now in the address 
descriptor for x.

 Remove Rx from the address descriptor of any variable other than x.

 When we process a copy statement x = y, after generating the load 
for y into register Ry, if needed, and after managing descriptors as 
for all load statements (per rule I):
 Add x to the register descriptor for Ry.

 Change the address descriptor for x so that its only location is Ry .



Instructions generated and the changes in the 
register and address descriptors



Rules for picking register Ry for y
 If y is currently in a register, pick a register already 

containing y as Ry. Do not issue a machine instruction 
to load this register, as none is needed.

 If y is not in a register, but there is a register that is 
currently empty, pick one such register as Ry.

 The difficult case occurs when y is not in a register, and 
there is no register that is currently empty. We need to 
pick one of the allowable registers anyway, and we 
need to make it safe to reuse. 



Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R, 

then we are OK.

 If v is x, the value being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this 
example), then we are OK. The reason is that in this case, we 
know this value of x is never again going to be used, so we are 
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I, 
there are no further uses of v, and if v is live on exit from the 
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its 
own memory location. This operation is called a spill.



Selection of the register Rx
1. Since a new value of x is being computed, a register 

that holds only x is always an acceptable choice for 
Rx.

2. If y is not used after instruction I, and Ry holds only y 
after being loaded, Ry can also be used as Rx. A 
similar option holds regarding z and Rx.



Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R, 

then we are OK.

 If v is x, the value being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this 
example), then we are OK. The reason is that in this case, we 
know this value of x is never again going to be used, so we are 
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I, 
there are no further uses of v, and if v is live on exit from the 
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its 
own memory location. This operation is called a spill.



Characteristic of peephole optimizations

 Redundant-instruction elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms



Redundant-instruction elimination
 LD a, R0

ST R0, a

 if debug == 1 goto L1

goto L2

L I : print debugging information

L2:



Flow-of-control optimizations
goto L1

...

Ll: goto L2

Can be replaced by:

goto L2

...

Ll: goto L2

if a<b goto L1

...

Ll: goto L2

Can be replaced by:

if a<b goto L2

...

Ll: goto L2



Algebraic simplifications

 x=x+0

 x=x*1



Register Allocation and Assignment

 Global Register Allocation

 Usage Counts

 Register Assignment for Outer Loops

 Register Allocation by Graph Coloring



Global register allocation
 Previously explained algorithm does local (block based) 

register  allocation

 This resulted that all live variables be stored at the end of 
block

 To save some of these stores and their corresponding loads, 
we might arrange to assign registers to frequently used 
variables and keep these registers consistent across block 
boundaries (globally)

 Some options are:
 Keep values of variables used in loops inside registers

 Use graph coloring approach for more globally allocation



Usage counts
 For the loops we can approximate the saving by 

register allocation as:

 Sum over all blocks (B) in a loop (L)

 For each uses of x before any definition in the block we 
add one unit of saving

 If x is live on exit from B and is assigned a value in B, 
then we ass 2 units of saving



Flow graph of an inner loop



Code sequence using global register 
assignment



Register allocation by Graph 
coloring
 Two passes are used

 Target-machine instructions are selected as though 
there are an infinite number of symbolic registers

 Assign physical registers to symbolic ones

 Create a register-interference graph

 Nodes are symbolic registers and edges connects two nodes if 
one is live at a point where the other is defined.

 For example in the previous example an edge connects a and d 
in the graph

 Use a graph coloring algorithm to assign registers.



Intermediate-code tree for a[i]=b+1



Tree-rewriting rules



Syntax-directed translation scheme



An instruction set for tree matching



Ershov Numbers
 Label any leaf 1.

 The label of an interior node with one child is the label 
of its child.

 The label of an interior node with two children is

 The larger of the labels of its children, if those labels are 
different.

 One plus the label of its children if the labels are the 
same.



A tree labeled with Ershov numbers



Generating code from a labeled expression tree
 To generate machine code for an interior node with label k and two 

children with equal labels (which must be k - l) do the following:
 Recursively generate code for the right child, using base b+1. The result of 

the right child appears in register Rb+k.
 Recursively generate code for the left child, using base b; the result appears 

in Rb+k-1.
 Generate the instruction OP Rb+k, Rb+k-1, Rb+k, where OP is the appropriate 

operation for the interior node in question.

 Suppose we have an interior node with label k and children with unequal 
labels. Then one of the children, which we'll call the "big" child, has label k 
, and the other child, the "little" child, has some label m < k. Do the 
following to generate code for this interior node, using base b:
 Recursively generate code for the big child, using base b; the result appears 

in register Rb+k-l.
 Recursively generate code for the small child, using base b; the result 

appears in register Rb+m-l. Note that since m < k, neither Rb+k-l nor any 
higher-numbered register is used.

 Generate the instruction OP Rb+k-l, Rb+m-l, Rb+k-1 or the instruction OP Rb+k-l, 
Rb+k-l, Rb+m+l, depending on whether the big child is the right or left child, 
respectively.

 For a leaf representing operand x, if the base is b generate the instruction 
LD Rb, x.



Optimal three-register code



Evaluating Expressions with an 
Insufficient Supply of Registers
 Node N has at least one child with label r or greater. Pick the larger 

child (or either if their labels are the same) to be the "big" child and let 
the other child be the "little" child.

 Recursively generate code for the big child, using base b = 1. The result 
of this evaluation will appear in register Rr

 Generate the machine instruction ST tk, Rr, where tk is a temporary 
variable used for temporary results used to help evaluate nodes with 
label k.

 Generate code for the little child as follows. If the little child has label r 
or greater, pick base b=1. If the label of the little child is j<r, then pick 
b=r-j. Then recursively apply this algorithm to the little child; the result 
appears in Rr.

 Generate the instruction LD Rr-l, tk.

 If the big child is the right child of N, then generate the instruction OP 
Rr, Rr, Rr-1. If the big child is the left child, generate OP Rr, Rr-1, Rr.



Optimal three-register code 
using only two registers



Dynamic Programming Algorithm

 Compute bottom-up for each node n of the expression tree T an 
array C of costs, in which the ith component C[i] is the optimal 
cost of computing the subtree S rooted at n into a register, 
assuming i registers are available for the computation, for

 Traverse T, using the cost vectors to determine which subtrees of 
T must be computed into memory.

 Traverse each tree using the cost vectors and associated 
instructions to generate the final target code. The code for the 
subtrees computed into memory locations is generated first.

 ri 1



Syntax tree for (a-b)+c*(d/e) with 
cost vector at each node



minimum cost of evaluating the 
root with two registers available
 Compute the left subtree with two registers available into 

register R0, compute the right subtree with one register 
available into register R1, and use the instruction ADD R0, 
R0, R1 to compute the root. This sequence has cost 
2+5+1=8.

 Compute the right subtree with two registers available into 
R l , compute the left subtree with one register available 
into R0, and use the instruction ADD R0, R0, R1. This 
sequence has cost 4+2+1=7.

 Compute the right subtree into memory location M, 
compute the left subtree with two registers available into 
register RO, and use the instruction ADD R0, R0, M. This 
sequence has cost 5+2+1=8.



Chapter 5

Syntax Directed Translation



Outline
 Syntax Directed Definitions

 Evaluation Orders of SDD’s

 Applications of Syntax Directed Translation

 Syntax Directed Translation Schemes



Introduction
 We can associate information with a language 

construct by attaching attributes to the grammar 
symbols.

 A syntax directed definition specifies the values of 
attributes by associating semantic rules with the 
grammar productions.

Production Semantic Rule

E->E1+T E.code=E1.code||T.code||’+’

• We may alternatively insert the semantic actions inside the grammar

E -> E1+T {print ‘+’}



Syntax Directed Definitions
 A SDD is a context free grammar with attributes and 

rules
 Attributes are associated with grammar symbols and 

rules with productions
 Attributes may be of many kinds: numbers, types, 

table references, strings, etc.
 Synthesized attributes

 A synthesized attribute at node N is defined only in 
terms of attribute values of children of N and at N it

 Inherited attributes
 An inherited attribute at node N is defined only in terms 

of attribute values at N’s parent, N itself and N’s siblings



Example of S-attributed SDD

1) L -> E n

2) E -> E1 + T

3) E -> T

4) T -> T1 * F

5) T -> F

6) F -> (E)

7) F -> digit

Production Semantic Rules

L.val = E.val

E.val = E1.val + T.val

E.val = T.val

T.val = T1.val * F.val

T.val = F.val

F.val = E.val

F.val = digit.lexval



Example of mixed attributes

1) T -> FT’

2) T’ -> *FT’1

3) T’ -> ε

1) F -> digit

Production Semantic Rules

T’.inh = F.val

T.val = T’.syn

T’1.inh = T’.inh*F.val

T’.syn = T’1.syn

T’.syn = T’.inh

F.val = F.val = digit.lexval



Evaluation orders for SDD’s
 A dependency graph is used to determine the order of 

computation of attributes

 Dependency graph

 For each parse tree node, the parse tree has a node for 
each attribute associated with that node

 If a semantic rule defines the value of synthesized 
attribute A.b in terms of the value of X.c then the 
dependency graph has an edge from X.c to A.b

 If a semantic rule defines the value of inherited attribute 
B.c in terms of the value of X.a then the dependency 
graph has an edge from X.c to B.c

 Example!



Ordering the evaluation of 
attributes
 If dependency graph has an edge from M to N then M 

must be evaluated before the attribute of N

 Thus the only allowable orders of evaluation are those 
sequence of nodes N1,N2,…,Nk such that if there is an 
edge from Ni to Nj then i<j

 Such an ordering is called a topological sortof a graph

 Example!



S-Attributed definitions
 An SDD is S-attributed if every attribute is synthesized

 We can have a post-order traversal of parse-tree to 
evaluate attributes in S-attributed definitions

postorder(N) {

for (each child C of N, from the left) postorder(C);

evaluate the attributes associated with node N;

}

 S-Attributed definitions can be implemented during 
bottom-up parsing without the need to explicitly create 
parse trees



L-Attributed definitions
 A SDD is L-Attributed if the edges in dependency graph 

goes from Left to Right but not from Right to Left.

 More precisely, each attribute must be either

 Synthesized

 Inherited, but if there us a production A->X1X2…Xn and there 
is an inherited attribute Xi.a computed by a rule associated 
with this production, then the rule may only use:

 Inherited attributes associated with the head A

 Either inherited or synthesized attributes associated with the 
occurrences of symbols X1,X2,…,Xi-1 located to the left of Xi

 Inherited or synthesized attributes associated with this occurrence 
of Xi itself, but in such a way that there is no cycle in the graph



Application of Syntax Directed 
Translation
 Type checking and intermediate code generation 

(chapter 6)

 Construction of syntax trees

 Leaf nodes: Leaf(op,val)

 Interior node: Node(op,c1,c2,…,ck)

 Example:

1) E -> E1 + T

2) E -> E1 - T

3) E -> T

4) T -> (E)

5) T -> id

6) T -> num

Production Semantic Rules

E.node=new node(‘+’, E1.node,T.node)

E.node=new node(‘-’, E1.node,T.node)
E.node = T.node

T.node = E.node

T.node = new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)



Syntax tree for L-attributed 
definition

+
1) E -> TE’

2) E’ -> + TE1’

3) E’ -> -TE1’

4) E’ -> 

5) T -> (E)

6) T -> id

7) T -> num

Production Semantic Rules
E.node=E’.syn

E’.inh=T.node

E1’.inh=new node(‘+’, E’.inh,T.node)

E’.syn=E1’.syn

E1’.inh=new node(‘+’, E’.inh,T.node)

E’.syn=E1’.syn
E’.syn = E’.inh

T.node = E.node

T.node=new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)



Syntax directed translation 
schemes
 An SDT is a Context Free grammar with program fragments 

embedded within production bodies
 Those program fragments are called semantic actions
 They can appear at any position within production body
 Any SDT can be implemented by first building a parse tree 

and then performing the actions in a left-to-right depth 
first order

 Typically SDT’s are implemented during parsing without 
building a parse tree



Postfix translation schemes
 Simplest SDDs are those that we can parse the grammar 

bottom-up and the SDD is s-attributed

 For such cases we can construct SDT where each action is 
placed at the end of the production and is executed along 
with the reduction of the body to the head of that 
production

 SDT’s with all actions at the right ends of the production 
bodies are called postfix SDT’s



Example of postfix SDT

1) L -> E n           {print(E.val);}

2) E -> E1 + T     {E.val=E1.val+T.val;}

3) E -> T              {E.val = T.val;}

4) T -> T1 * F      {T.val=T1.val*F.val;}

5) T -> F               {T.val=F.val;}

6) F -> (E)            {F.val=E.val;}

7) F -> digit          {F.val=digit.lexval;}



Parse-Stack implementation of 
postfix SDT’s
 In a shift-reduce parser we can easily implement 

semantic action using the parser stack

 For each nonterminal (or state) on the stack we can 
associate a record holding its attributes

 Then in a reduction step we can execute the semantic 
action at the end of a production to evaluate the 
attribute(s) of the non-terminal at the leftside of the 
production

 And put the value on the stack in replace of the 
rightside of production



Example
L -> E n           {print(stack[top-1].val);

top=top-1;}

E -> E1 + T     {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

E -> T              

T -> T1 * F      {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

T -> F               

F -> (E) {stack[top-2].val=stack[top-1].val

top=top-2;}

F -> digit



SDT’s with actions inside 
productions
 For a production B->X {a} Y

 If the parse is bottom-up then we 
perform action “a” as soon as this 
occurrence of X appears on the 
top of the parser stack

 If the parser is top down we 
perform “a” just before we expand 
Y

 Sometimes we cant do things as 
easily as explained above

 One example is when we are 
parsing this SDT with a bottom-
up parser

1) L -> E n           

2) E -> {print(‘+’);} E1 + T     

3) E -> T              

4) T -> {print(‘*’);} T1 * F   

5) T -> F

6) F -> (E) 

7) F -> digit {print(digit.lexval);}



SDT’s with actions inside 
productions (cont)
 Any SDT can be 

implemented as follows

1. Ignore the actions and 
produce a parse tree

2. Examine each interior 
node N and add actions 
as new children at the 
correct position

3. Perform a postorder
traversal and execute 
actions when their nodes 
are visited

L

E

+E
{print(‘+’);}

T

F

digit

{print(4);}

T

T F*

digit

{print(5);}

F

digit

{print(3);}

{print(‘*’);}



SDT’s for L-Attributed definitions
 We can convert an L-attributed SDD into an SDT using 

following two rules:

 Embed the action that computes the inherited attributes 
for a nonterminal A immediately before that occurrence 
of A. if several inherited attributes of A are dpendent on 
one another in an acyclic fashion, order them so that 
those needed first are computed first

 Place the action of a synthesized attribute for the head 
of a production at the end of the body of the production



Example
S -> while (C) S1 L1=new();

L2=new();

S1.next=L1;

C.false=S.next;

C.true=L2;

S.code=label||L1||C.code||label||L2||S1.code

S -> while ( {L1=new();L2=new();C.false=S.next;C.true=L2;}

C) {S1.next=L1;} 

S1{S.code=label||L1||C.code||label||L2||S1.code;}



Readings
 Chapter 5 of the book



Chapter 4

Syntax Analysis



Outline
 Role of parser

 Context free grammars

 Top down parsing

 Bottom up parsing

 Parser generators



The role of parser

Lexical 
Analyzer

Parser
Source

program

token

getNext

Token

Symbol
table

Parse tree Rest of 
Front End

Intermediate

representation



Uses of grammars

E -> E + T | T

T -> T * F | F

F -> (E) | id

E -> TE’

E’ -> +TE’ | Ɛ

T -> FT’

T’ -> *FT’ | Ɛ

F -> (E) | id



Error handling
 Common programming errors

 Lexical errors

 Syntactic errors

 Semantic errors

 Lexical errors

 Error handler goals

 Report the presence of errors clearly and accurately

 Recover from each error quickly enough to detect 
subsequent errors

 Add minimal overhead to the processing of correct 
progrms



Error-recover strategies
 Panic mode recovery

 Discard input symbol one at a time until one of 
designated set of synchronization tokens is found

 Phrase level recovery
 Replacing a prefix of remaining input by some string 

that allows the parser to continue

 Error productions
 Augment the grammar with productions that generate 

the erroneous constructs

 Global correction
 Choosing minimal sequence of changes to obtain a 

globally least-cost correction



Context free grammars
 Terminals

 Nonterminals

 Start symbol

 productions

expression -> expression + term

expression -> expression – term

expression -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expression)

factor -> id



Derivations
 Productions are treated as rewriting rules to generate a 

string

 Rightmost and leftmost derivations

 E -> E + E | E * E | -E | (E) | id

 Derivations for –(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 



Parse trees
 -(id+id)
 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 



Ambiguity
 For some strings there exist more than one parse tree

 Or more than one leftmost derivation

 Or more than one rightmost derivation

 Example: id+id*id



Elimination of ambiguity



Elimination of ambiguity (cont.)
 Idea:

 A statement appearing between a then and an else
must be matched



Elimination of left recursion
 A grammar is left recursive if it has a non-terminal A

such that there is a derivation A=> Aα

 Top down parsing methods cant handle left-
recursive grammars

 A simple rule for direct left recursion elimination:

 For a rule like:

 A -> A α|β

 We may replace it with

 A -> β A’

 A’ -> α A’ | ɛ

+



Left recursion elimination (cont.)
 There are cases like following

 S -> Aa | b
 A -> Ac | Sd | ɛ

 Left recursion elimination algorithm:
 Arrange the nonterminals in some order A1,A2,…,An.
 For (each i from 1 to n) {

 For (each j from 1 to i-1) {
 Replace each production of the form Ai-> Aj γ by the production 

Ai -> δ1 γ | δ2 γ | … |δk γ where Aj-> δ1 | δ2 | … |δk

are all current Aj productions
 }
 Eliminate left recursion among the Ai-productions

 }



Left factoring
 Left factoring is a grammar transformation that is useful for 

producing a grammar suitable for predictive or top-down 
parsing.

 Consider following grammar:
 Stmt -> if expr then stmt else stmt

 | if expr then stmt

 On seeing input if it is not clear for the parser which 
production to use

 We can easily perform left factoring:

 If we have A->αβ1 | αβ2   then we replace it with
 A  -> αA’

 A’ ->  β1 | β2



Left factoring (cont.)
 Algorithm

 For each non-terminal A, find the longest prefix α
common to two or more of its alternatives. If α<> ɛ, 
then  replace all of A-productions A->αβ1 |αβ2  | … 
| αβn | γ by

 A -> αA’ | γ

 A’ -> β1 |β2  | … | βn 

 Example:

 S -> I E t S | i E t S e S | a

 E -> b





Introduction
 A Top-down parser tries to create a parse tree from the 

root towards the leafs scanning input from left to right

 It can be also viewed as finding a leftmost derivation 
for an input string

 Example:   id+id*id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

E
lm

E

T E’

lm
E

T E’

F T’

lm
E

T E’

F T’

id

lm
E

T E’

F T’

id Ɛ

lm
E

T E’

F T’

id Ɛ

+ T E’



Recursive descent parsing
 Consists of a set of procedures, one for each 

nonterminal

 Execution begins with the procedure for start symbol

 A typical procedure for a non-terminal

void A() {

choose an A-production, A->X1X2..Xk

for (i=1 to k) {

if (Xi is a nonterminal

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}



Recursive descent parsing (cont)
 General recursive descent may require backtracking

 The previous code needs to be modified to allow 
backtracking

 In general form it cant choose an A-production easily.

 So we need to try all alternatives

 If one failed the input pointer needs to be reset and 
another alternative should be tried

 Recursive descent parsers cant be used for left-
recursive grammars



Example
S->cAd

A->ab | a Input: cad

S

c A d

S

c A d

a b

S

c A d

a



First and Follow
 First() is set of terminals that begins strings derived from 

 If α=>ɛ then is also in First(ɛ)

 In predictive parsing when we have A-> α|β, if First(α) 
and First(β) are disjoint sets then we can select 
appropriate A-production by looking at the next input

 Follow(A), for any nonterminal A, is set of terminals a that 
can appear immediately after A in some sentential form
 If we have S => αAaβ for some αand βthen a is in 

Follow(A)

 If A can be the rightmost symbol in some sentential form, 
then $ is in Follow(A)

*

*



Computing First
 To compute First(X) for all grammar symbols X, apply 

following rules until no more terminals or ɛ can be 
added to any First set:

1. If X is a terminal then First(X) = {X}.

2. If X is a nonterminal and X->Y1Y2…Yk is a production 
for some k>=1, then place a in First(X) if for some i a is 
in First(Yi) and ɛ is in all of First(Y1),…,First(Yi-1) that 
is Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then add 
ɛ to First(X).

3. If X-> ɛ is a production then add ɛ to First(X)

 Example!

*

*



Computing follow
 To compute First(A) for all nonterminals A, apply 

following rules until nothing can be added to any 
follow set:

1. Place $ in Follow(S) where S is the start symbol

2. If there is a production A-> αBβ then everything in 
First(β) except ɛ is in Follow(B).

3. If there is a production A->B or a production               
A->αBβ where First(β) contains ɛ, then everything 
in Follow(A) is in Follow(B)

 Example!



LL(1) Grammars
 Predictive parsers are those recursive descent parsers needing no 

backtracking

 Grammars for which we can create predictive parsers are called 
LL(1)
 The first L means scanning input from left to right

 The second L means leftmost derivation

 And 1 stands for using one input symbol for lookahead

 A grammar G is LL(1) if and only if whenever A-> α|βare two 
distinct productions of G, the following conditions hold:
 For no terminal a do αandβ both derive strings beginning with a

 At most one of α or βcan derive empty string

 If α=> ɛ then βdoes not derive any string beginning with a 
terminal in Follow(A).

*



Construction of predictive 
parsing table
 For each production A->α in grammar do the 

following:

1. For each terminal a in First(α) add A-> in M[A,a]

2. If ɛ is in First(α), then for each terminal b in 
Follow(A) add A-> ɛ to M[A,b]. If ɛ is in First(α) and 
$ is in Follow(A), add A-> ɛ to M[A,$] as well

 If after performing the above, there is no production 
in M[A,a] then set M[A,a] to error



Example
E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

F
T
E
E’
T’

First Follow

{(,id}
{(,id}

{(,id}

{+,ɛ}

{*,ɛ}

{+, *, ), $}
{+, ), $}

{+, ), $}

{), $}

{), $}

E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id



Another example
S -> iEtSS’ | a
S’ -> eS | Ɛ
E -> b

S

S’

E

Non -

terminal

Input Symbol

a b e i t $

S -> a S -> iEtSS’

S’ -> Ɛ
S’ -> eS 

S’ -> Ɛ

E -> b



Non-recursive predicting parsing

a + b $

Predictive

parsing 

program

output

Parsing

Table

M

stack X

Y

Z

$



Predictive parsing algorithm
Set ip point to the first symbol of w;
Set X to the top stack symbol;
While (X<>$) { /* stack is not empty */

if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a] = X->Y1Y2..Yk) {

output the production X->Y1Y2..Yk;
pop the stack;
push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}
set X to the top stack symbol;

}



Example
 id+id*id$

Matched Stack Input Action

E$ id+id*id$



Error recovery in predictive parsing
 Panic mode

 Place all symbols in Follow(A) into synchronization set for 
nonterminal A: skip tokens until an element of Follow(A) is seen 
and pop A from stack.

 Add to the synchronization set of lower level construct the symbols 
that begin higher level constructs

 Add symbols in First(A) to the synchronization set of nonterminal 
A

 If a nonterminal can generate the empty string then the production 
deriving can be used as a default

 If a terminal on top of the stack cannot be matched, pop the 
terminal, issue a message saying that the terminal was insterted



Example
E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id

synch synch

synch synch synch

synch synch synch synch

Stack Input Action

E$ )id*+id$ Error, Skip )

E$ id*+id$ id is in First(E)
TE’$ id*+id$

FT’E’$ id*+id$
idT’E’$ id*+id$

T’E’$ *+id$
*FT’E’$ *+id$

+id$FT’E’$ Error, M[F,+]=synch
+id$T’E’$ F has been poped





Introduction
 Constructs parse tree for an input string beginning at 

the leaves (the bottom) and working towards the root 
(the top)

 Example: id*id

E -> E + T | T
T -> T * F | F
F -> (E) | id id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

F

T * F

id

F id

F

E



Shift-reduce parser
 The general idea is to shift some symbols of input to 

the stack until a reduction can be applied

 At each reduction step, a specific substring matching 
the body of a production is replaced by the 
nonterminal at the head of the production

 The key decisions during bottom-up parsing are about 
when to reduce and about what production to apply

 A reduction is a reverse of a step in a derivation

 The goal of a bottom-up parser is to construct a 
derivation in reverse:

 E=>T=>T*F=>T*id=>F*id=>id*id



Handle pruning
 A Handle is a substring that matches the body of a 

production and whose reduction represents one step 
along the reverse of a rightmost derivation

Right sentential form Handle Reducing production

id*id id F->id

F*id F

id

T->F

T*id F->id

T*F T*F E->T*F



Shift reduce parsing
 A stack is used to hold grammar symbols

 Handle always appear on top of the stack

 Initial configuration:

Stack Input

$ w$

 Acceptance configuration

Stack Input

$S $



Shift reduce parsing (cont.)
 Basic operations:

 Shift

 Reduce

 Accept

 Error

 Example: id*id

Stack Input Action

$

$id

id*id$ shift

*id$ reduce by F->id
$F *id$ reduce by T->F
$T *id$ shift
$T* id$ shift

$T*id $ reduce by F->id

$T*F $ reduce by T->T*F

$T $ reduce by E->T

$E $ accept



Handle will appear on top of 
the stack

S

A

B

α β γ y z

Stack Input

$αβγ yz$

$αβB yz$

$αβBy z$

S

AB

α γ y zx

Stack Input

$αγ xyz$

$αBxy z$



Conflicts during shit reduce 
parsing
 Two kind of conflicts

 Shift/reduce conflict

 Reduce/reduce conflict

 Example:

Stack Input

else …$… if expr then stmt



Reduce/reduce conflict

stmt -> id(parameter_list)

stmt -> expr:=expr

parameter_list->parameter_list, parameter

parameter_list->parameter

parameter->id

expr->id(expr_list)

expr->id

expr_list->expr_list, expr

expr_list->expr Stack Input

,id) …$… id(id



LR Parsing
 The most prevalent type of bottom-up parsers

 LR(k), mostly interested on parsers with k<=1

 Why LR parsers?

 Table driven

 Can be constructed to recognize all programming language 
constructs

 Most general non-backtracking shift-reduce parsing method

 Can detect a syntactic error as soon as it is possible to do so

 Class of grammars for which we can construct LR parsers are 
superset of those which we can construct LL parsers



States of an LR parser
 States represent set of items

 An LR(0) item of G is a production of G with the dot at 
some position of the body:

 For A->XYZ we have following items

 A->.XYZ

 A->X.YZ

 A->XY.Z

 A->XYZ.

 In a state having A->.XYZ we hope to see a string 
derivable from XYZ next on the input.

 What about A->X.YZ?



Constructing canonical LR(0) 
item sets
 Augmented grammar:

 G with addition of a production: S’->S

 Closure of item sets:

 If I is a set of items, closure(I) is a set of items constructed from I by 
the following rules:

 Add every item in I to closure(I)

 If A->α.Bβ is in closure(I) and B->γ is a production then add the 
item B->.γ to clsoure(I).

 Example:
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id



Constructing canonical LR(0) 
item sets (cont.)
 Goto (I,X) where I is an item set and X is a grammar 

symbol is closure of set of all items [A-> αX. β] where 
[A-> α.X β] is in I

 Example

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(



Closure algorithm
SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item A-> α.Bβ in J)

for (each prodcution B->γ of G)

if (B->.γ is not in J)

add B->.γ to J;

until no more items are added to J on one round;

return J;



GOTO algorithm
SetOfItems  GOTO(I,X) {

J=empty;

if (A-> α.X β is in I) 

add CLOSURE(A-> αX. β ) to J;

return J;

}



Canonical LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C;

until no new set of items are added to C on a round;

}



Example
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

I5
F->id.

id

I3
T>F.

+

I6
E->E+.T
T->.T*F
T->.F
F->.(E)
F->.id

*
I7

T->T*.F
F->.(E)
F->.id

E
I8

E->E.+T
F->(E.)

)
I11

F->(E).

I9

E->E+T.
T->T.*F

T

I10

T->T*F.

F

id

+

$
acc



Use of LR(0) automaton
 Example: id*id

Line Stack Symbols Input Action

(1) 0 $ id*id$ Shift to 5

(2) 05 $id *id$ Reduce by F->id

(3) 03 $F *id$ Reduce by T->F

(4) 02 $T *id$ Shift to 7

(5) 027 $T* id$ Shift to 5

(6) 0275 $T*id $ Reduce by F->id

(7) 02710 $T*F $ Reduce by T->T*F

(8) 02 $T $ Reduce by E->T

(9) 01 $E $ accept



LR-Parsing model

a1 … ai … an $INPUT

LR Parsing 
Program

Sm

Sm-1

…

$

ACTION GOTO

Output



LR parsing algorithm
let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {
pop |β| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

}



Example (0) E’->E
(1) E -> E + T
(2) E-> T
(3) T -> T * F 
(4) T-> F
(5) F -> (E) 
(6) F->id

STATE ACTON GOTO

id + * ( ) $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R
4

R7 R4 R4

4 S5 S4 8 2 3

5 R
6

R
6

R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

id*id+id?

Line Stac
k

Symbol
s

Input Action

(1) 0 id*id+id$ Shift to 5

(2) 05 id *id+id$ Reduce by F->id

(3) 03 F *id+id$ Reduce by T->F

(4) 02 T *id+id$ Shift to 7

(5) 027 T* id+id$ Shift to 5

(6) 0275 T*id +id$ Reduce by F->id

(7) 02710 T*F +id$ Reduce by T-
>T*F

(8) 02 T +id$ Reduce by E->T

(9) 01 E +id$ Shift

(10) 016 E+ id$ Shift

(11) 0165 E+id $ Reduce by F->id

(12) 0163 E+F $ Reduce by T->F

(13) 0169 E+T` $ Reduce by E-
>E+T

(14) 01 E $ accept



Constructing SLR parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
 If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in 

follow(A)
 If {S’->.S] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
SLR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S]



Example grammar which is not 
SLR(1) S -> L=R | R

L -> *R | id

R -> L

I0

S’->.S

S -> .L=R 

S->.R

L -> .*R | 

L->.id

R ->. L

I1

S’->S.

I2

S ->L.=R 

R ->L.

I3

S ->R.

I4

L->*.R

R->.L

L->.*R

L->.id

I5

L -> id.

I6

S->L=.R

R->.L

L->.*R

L->.id

I7

L -> *R.

I8

R -> L.

I9

S -> L=R.

Action
=

2
Shift 6

Reduce R->L



More powerful LR parsers
 Canonical-LR or just LR method

 Use lookahead symbols for items: LR(1) items

 Results in a large collection of items

 LALR: lookaheads are introduced in LR(0) items



Canonical LR(1) items
 In LR(1) items each item is in the form: [A->α.β,a]

 An LR(1) item [A->α.β,a] is valid for a viable prefix γ if 
there is a derivation S=>δAw=>δαβw, where

 Γ= δα

 Either a is the first symbol of w, or w is ε and a is $

 Example:

 S->BB

 B->aB|b

*
rm

S=>aaBab=>aaaBab*
rm

Item [B->a.B,a] is valid for γ=aaa

and w=ab 



Constructing LR(1) sets of items
SetOfItems Closure(I) {

repeat
for (each item [A->α.Bβ,a] in I)

for (each production B->γ in G’)
for (each terminal b in First(βa))

add [B->.γ, b] to set I;
until no more items are added to I;
return I;

}

SetOfItems Goto(I,X) {
initialize J to be the empty set;
for (each item [A->α.Xβ,a] in I)

add item [A->αX.β,a] to set J;
return closure(J);

}

void items(G’){
initialize C to Closure({[S’->.S,$]});
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (Goto(I,X) is not empty and not in C)
add Goto(I,X) to C;

until no new sets of items are added to C;
}



Example
S’->S

S->CC

C->cC

C->d



Canonical LR(1) parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(1) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ, b] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to 
“shift j”

 If [A->α., a] is in Ii, then set ACTION[i,a] to “reduce A->α”
 If {S’->.S,$] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
LR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S,$]



Example
S’->S

S->CC

C->cC

C->d



LALR Parsing Table
 For the previous example we had:

I4

C->d. ,   c/d

I7

C->d. ,   $

I47

C->d. ,   c/d/$

 State merges cant produce Shift-Reduce conflicts. 
Why?

 But it may produce reduce-reduce conflict



Example of RR conflict in state 
merging
S’->S

S -> aAd | bBd | aBe | bAe

A -> c

B -> c



An easy but space-consuming 
LALR table construction
 Method:

1. Construct C={I0,I1,…,In} the collection of LR(1) items.

2. For each core among the set of LR(1) items, find all sets 
having that core, and replace these sets by their union.

3. Let C’={J0,J1,…,Jm} be the resulting sets. The parsing actions 
for state i, is constructed from Ji as before. If there is a 
conflict grammar is not LALR(1).

4. If J is the union of one or more sets of LR(1) items, that is J = 
I1 UI2…IIk then the cores of Goto(I1,X), …, Goto(Ik,X) are 
the same and is a state like K, then we set Goto(J,X) =k.

 This method is not efficient, a more efficient one is 
discussed in the book



Compaction of LR parsing table
 Many rows of action tables are identical

 Store those rows separately and have pointers to them 
from different states

 Make lists of (terminal-symbol, action) for each state

 Implement Goto table by having a link list for each 
nonterinal in the form (current state, next state)



Using ambiguous grammars
E->E+E

E->E*E

E->(E)

E->id

I0: E’->.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I1: E’->E.

E->E.+E

E->E.*E

I2: E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I3: E->.id
I4: E->E+.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I5:  E->E*.E

E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I6: E->(E.)

E->E.+E

E->E.*E

I7: E->E+E.

E->E.+E

E->E.*E

I8: E->E*E.

E->E.+E

E->E.*E

I9: E->(E).

STATE ACTON GO
TO

id + * ( ) $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

5 S3 S2 8

6 S4 S5

7 R1 S5 R1 R1

8 R2 R2 R2 R2

9 R3 R3 R3 R3



Readings
 Chapter 4 of the book



Chapter 7

Run-Time Environments



Outline
 Compiler must do the storage allocation and provide 

access to variables and data

 Memory management

 Stack allocation

 Heap management

 Garbage collection



Storage Organization



Static vs. Dynamic Allocation
 Static: Compile time, Dynamic: Runtime allocation

 Many compilers use some combination of following

 Stack storage: for local variables, parameters and so on

 Heap storage: Data that may outlive the call to the 
procedure that created it

 Stack allocation is a valid allocation for procedures 
since procedure calls are nested



Sketch of a quicksort program



Activation for Quicksort



Activation tree representing calls during 
an execution of quicksort



Activation records
 Procedure calls and returns are usaully managed by a 

run-time stack called the control stack.

 Each live activation has an activation record 
(sometimes called a frame)

 The root of activation tree is at the bottom of the stack

 The current execution path specifies the content of the 
stack with the last activation has record in the top of 
the stack.



A General Activation Record



Activation Record
 Temporary values

 Local data

 A saved machine status

 An “access link”

 A control link

 Space for the return value of the called function

 The actual parameters used by the calling procedure



Downward-growing stack of activation records



Designing Calling Sequences
 Values communicated between caller and callee are 

generally placed at the beginning of callee’s activation 
record

 Fixed-length items: are generally placed at the middle

 Items whose size may not be known early enough: are 
placed at the end of activation record

 We must locate the top-of-stack pointer judiciously: a 
common approach is to have it point to the end of 
fixed length fields.



Division of tasks between caller and callee



calling sequence
 The caller evaluates the actual parameters

 The caller stores a return address and the old value of 
top-sp into the callee's activation record.

 The callee saves the register values and other status 
information.

 The callee initializes its local data and begins 
execution.



corresponding return sequence
 The callee places the return value next to the 

parameters

 Using information in the machine-status field, the 
callee restores top-sp and other registers, and then 
branches to the return address that the caller placed in 
the status field.

 Although top-sp has been decremented, the caller 
knows where the return value is, relative to the current 
value of top-sp; the caller therefore may use that value.



Access to dynamically allocated arrays



ML
 ML is a functional language

 Variables are defined, and have their unchangeable 
values initialized, by a statement of the form:

val (name) = (expression)

 Functions are defined using the syntax:
fun (name) ( (arguments) ) = (body)

 For function bodies we shall use let-statements of the 
form:

let (list of definitions) in (statements) end



A version of quicksort, in ML style, using 
nested functions



Access links for finding nonlocal data



Sketch of ML program that uses function-
parameters



Actual parameters carry their 
access link with them



Maintaining the Display



Maintaining the Display (Cont.)



Memory Manager
 Two basic functions:

 Allocation

 Deallocation

 Properties of memory managers:

 Space efficiency

 Program efficiency

 Low overhead



Typical Memory Hierarchy Configurations



Locality in Programs
The conventional wisdom is that programs spend 90% of 

their time executing 10% of the code:

 Programs often contain many instructions that are 
never executed.

 Only a small fraction of the code that could be invoked 
is actually executed in a typical run of the program.

 The typical program spends most of its time executing 
innermost loops and tight recursive cycles in a 
program.



Part of a Heap



28

Reference Counting

Mark-and-Sweep

Short-Pause Methods



29

The Essence
 Programming is easier if the run-time system 

“garbage-collects” --- makes space belonging to 
unusable data available for reuse.

 Java does it; C does not.

 But stack allocation in C gets some of the advantage.



30

Desiderata
1. Speed --- low overhead for garbage collector.

2. Little program interruption.
 Many collectors shut down the program to hunt for 

garbage.

3. Locality --- data that is used together is placed 
together on pages, cache-lines.



31

The Model --- (1)
 There is a root set of data that is a-priori reachable.

 Example: In Java, root set = static class variables plus 
variables on run-time stack.

 Reachable data : root set plus anything referenced 
by something reachable.



32

The Model --- (2)
 Things requiring space are “objects.”

 Available space is in a heap --- large area managed by 
the run-time system.

 Allocator finds space for new objects.

 Space for an object is a chunk.

 Garbage collector finds unusable objects, returns their 
space to the heap, and maybe moves objects around in 
the heap.



33

A Heap

. . .

Object 1 Object 3Object 2

Free List



34

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based



35

Reference Counting
 The simplest (but imperfect) method is to give each 

object a reference count = number of references to 
this object.

 OK if objects have no internal references.

 Initially, object has one reference.

 If reference count becomes 0, object is garbage and its 
space becomes available.



36

Examples
Integer i = new Integer(10);

 Integer object is created with RC = 1.

j = k; (j, k are Integer references.)

 Object referenced by j has RC--.

 Object referenced by k has RC++.



37

Transitive Effects
 If an object reaches RC=0 and is collected, the 

references within that object disappear.

 Follow these references and decrement RC in the 
objects reached.

 That may result in more objects with RC=0, leading to 
recursive collection.



38

Example: Reference Counting
Root

Object

A(1)

E(1)D(2)

B(2)

C(1)



39

Example: Reference Counting
Root

Object

A(0)

E(1)D(2)

B(2)

C(1)



40

Example: Reference Counting
Root

Object

E(1)D(2)

B(1)

C(0)



41

Example: Reference Counting
Root

Object

E(1)D(1)

B(1)
B, D, and E are

garbage, but their

reference counts

are all > 0.  They

never get collected.



42

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic



43

Four States of Memory Chunks
1. Free = not holding an object; available for 

allocation.

2. Unreached = Holds an object, but has not yet 
been reached from the root set.

3. Unscanned = Reached from the root set, but its 
references not yet followed.

4. Scanned = Reached and references followed.



44

Marking
1. Assume all objects in Unreached state.

2. Start with the root set.  Put them in state Unscanned.

3. while Unscanned objects remain do

examine one of these objects;

make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;



45

Sweeping
 Place all objects still in the Unreached state into the 

Free state.

 Place all objects in Scanned state into the Unreached
state.

 To prepare for the next mark-and-sweep.



46

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’s



47

Baker’s Algorithm --- (1)
 Problem: The basic algorithm takes time proportional 

to the heap size.

 Because you must visit all objects to see if they are 
Unreached.

 Baker’s algorithm keeps a list of all allocated chucks of 
memory, as well as the Free list.



48

Baker’s Algorithm --- (2)
 Key change: In the sweep, look only at the list of 

allocated chunks.

 Those that are not marked as Scanned are garbage 
and are moved to the Free list.

 Those in the Scanned state are put in the 
Unreached state.

 For the next collection.



49

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic



50

Issue: Why Compact?
 Compact = move reachable objects to contiguous 

memory.

 Locality --- fewer pages or cache-lines needed to hold 
the active data.

 Fragmentation --- available space must be managed so 
there is space to store large objects.



51

Mark-and-Compact
1. Mark reachable objects as before.

2. Maintain a table (hash?) from reached chunks to 
new locations for the objects in those chunks.

 Scan chunks from low end of heap.

 Maintain pointer free that counts how much 
space is used by reached objects so far.



52

Mark-and-Compact --- (2)
3. Move all reached objects to their new locations, 

and also retarget all references in those objects to 
the new locations.

 Use the table of new locations.

4. Retarget root references.



53

Example: Mark-and-Compact

free



54

Example: Mark-and-Compact

free



55

Example: Mark-and-Compact

free



56

Example: Mark-and-Compact

free



57

Example: Mark-and-Compact

free



58

Example: Mark-and-Compact

free



59

Example: Mark-and-Compact

free



60

Example: Mark-and-Compact

free



61

Example: Mark-and-Compact

free



62

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

A different Cheney, BTW, so no jokes, please.



63

Cheney’s Copying Collector
 A shotgun approach to GC.

 2 heaps: Allocate space in one, copy to second when 
first is full, then swap roles.

 Maintain table of new locations.

 As soon as an object is reached, give it the next free 
chunk in the second heap.

 As you scan objects, adjust their references to point 
to second heap.



64

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial



65

Short-Pause Garbage-Collection
1. Incremental --- run garbage collection in parallel 

with mutation (operation of the program).

2. Partial --- stop the mutation, but only briefly, to 
garbage collect a part of the heap.



66

Problem With Incremental GC
 OK to mark garbage as reachable.

 Not OK to GC a reachable object.

 If a reference r within a Scanned object is mutated 
to point to an Unreached object, the latter may be 
garbage-collected anyway.

 Subtle point: How do you point to an Unreached
object?



67

One Solution: Write Barriers
 Intercept every write of a reference in a scanned object.

 Place the new object referred to on the Unscanned list.

 A trick: protect all pages containing Scanned objects.

 A hardware interrupt will invoke the fixup. 



68

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

Generational



69

The Object Life-Cycle
 “Most objects die young.”

 But those that survive one GC are likely to survive many.

 Tailor GC to spend more time on regions of the heap 
where objects have just been created.

 Gives a better ratio of reclaimed space per unit time.



70

Partial Garbage Collection
 We collect one part(ition) of the heap.

 The target set.

 We maintain for each partition a remembered set of 
those objects outside the partition (the stable set) that 
refer to objects in the target set.

 Write barriers can be used to maintain the remembered 
set.



71

Collecting a Partition
 To collect a part of the heap:

1. Add the remembered set for that partition to the root 
set.

2. Do a reachability analysis as before.

 Note the resulting Scanned set may include garbage.



72

Example: “Reachable” Garbage

The target

partition
Not reached from

the root set

In the remembered set

Stable set



73

Generational Garbage Collection
 Divide the heap into partitions P0, P1,…

 Each partition holds older objects than the one before it.

 Create new objects in P0, until it fills up.

 Garbage collect P0 only, and move the reachable 
objects to P1.



74

Generational GC --- (2)
 When P1 fills, garbage collect P0 and P1, and put the 

reachable objects in P2.

 In general:  When Pi fills, collect P0, P1,…,Pi and put 
the reachable objects in P(i +1).



75

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

GenerationalTrain



76

The Train Algorithm
 Problem with generational GC:

1. Occasional total collection (last partition).

2. Long-lived objects move many times.

 Train algorithm useful for long-lived objects.

 Replaces the higher-numbered partitions in 
generational GC.



77

Partitions = “Cars”

Car 11Train 1

Car 2kCar 22Car 21

Car n2Car n1

Car 13Car 12

. . .Train 2

Train n

.

.

.



78

Organization of Heap
 There can be any number of trains, and each train can 

have any number of cars.

 You need to decide on a policy that gives a reasonable 
number of each.

 New objects can be placed in last car of last train, or 
start a new car or even a new train.



79

Garbage-Collection Steps
1. Collect the first car of the first train.

2. Collect the entire first train if there are no references 
from the root set or other trains.

 Important: this is how we find and eliminate large, 
cyclic garbage structures.



80

Remembered Sets
 Each car has a remembered set of references from later 

trains and later cars of the same train.

 Important: since we only collect first cars and trains, 
we never need to worry about “forward” references (to 
later trains or later cars of the same train).



81

Collecting the First Car of the 
First Train

 Do a partial collection as before, using every other 
car/train as the stable set.

 Move all Reachable objects of the first car 
somewhere else.

 Get rid of the car.



82

Moving Reachable Objects
 If object o has a reference from another train, pick one 

such train and move o to that train.

 Same car as reference, if possible, else make new car.

 If references only from root set or first train, move o to 
another car of first train, or create new car.



83

Panic Mode
 The problem: it is possible that when collecting the 

first car, nothing is garbage.

 We then have to create a new car of the first train that 
is essentially the same as the old first car.



84

Panic Mode --- (2)
 If that happens, we go into panic mode, which 

requires that:

1. If a reference to any object in the first train is 
rewritten, we make the new reference a “dummy” 
member of the root set.

2. During GC, if we encounter a reference from the 
“root set,” we move the referenced object to another 
train.



85

Panic Mode --- (3)
 Subtle point: If references to the first train never 

mutate, eventually all reachable objects will be sucked 
out of the first train, leaving cyclic garbage.

 But perversely, the last reference to a first-train object 
could move around so it is never to the first car.


